Scholarship Orientation Program Held at EPS

IN 1971 the fastest car in the world was the Ferrari Daytona, capable of 280mph (174mph). The world’s tallest buildings were New York’s twin towers, at 415 meters (1,362 feet).

In November that year Intel launched the first commercial microprocessor chip, the 4004, containing 2,300 tiny transistors, each the size of a red blood cell.

Since then chips have improved in line with the prediction of Gordon Moore, Intel’s co-founder. According to his rule of thumb, known as Moore’s law, processing power doubles roughly every two years as smaller transistors are packed ever more tightly onto silicon wafers, boosting performance and reducing costs. A modern Intel Skylake processor contains around 1.75 billion transistors half a million of them would fit on a single transistor from the 4004 and collectively they deliver about 400,000 times as much computing muscle.

This exponential progress is difficult to relate to the physical world. If cars and skyscrapers had improved at such rates since 1971, the fastest car would now be capable of a tenth of the speed of light; the tallest building would reach half way to the Moon.

The impact of Moore’s law is visible all around us. Today 3 billion people carry smart phones in their pockets: each one is more powerful than a room-sized supercomputer from the 1980s. Countless industries have been upended by digital disruption.

Abundant computing power has even slowed nuclear tests, because atomic weapons are more easily tested using simulated explosions rather than real ones. Moore’s law has become a cultural trope: people inside and outside Silicon Valley expect technology to get better every year. But now, after five decades, the end of Moore’s law is in sight.

Making transistors smaller no longer guarantees that they will be cheaper or faster. This does not mean progress in computing will be defined by improvements in three other areas, is now doubling only every 2.5 years, says Intel). And the future of computing will be defined by improvements in three other areas, rather than the rate of miniaturization. Scientists are looking for smarter systems and new ways to use existing components. The first is software. Scientists are looking for smarter systems and new ways to use existing components. The third area of improvement lies in new computing architectures that exploit quantum-mechanical weirdness to crunch multiple data sets simultaneously.

For more than 50 years, the seemingly inexorable shrinking of transistors made computers steadily cheaper and more capable. As Moore’s law fades, progress will be less meteoric. But computers and other devices will continue to become more powerful just in different and more varied ways.

The Future of Computing

The other prominent success of the school in the same academic year is the Grade 10 students’ outstanding results in the General Secondary School Leaving Certificate Examination. All the students who took the exam have promoted to the University Preparatory Education with distinction. Grade 8 students of the year are also another source of pride to EPS. All of them scored magnificent results in the Primary School Leaving Certificate Examination set at region level.

Owing to its Grade 12 students’ best achievement in the University Entrance Examination, EPS got 3rd rank among all schools in Addis Ababa city. The highest scoring students are awarded by Addis Ababa City Administration Education Bureau for their honorable exam results. EPS Guleli Branch has been also awarded a cup and a certificate from Guleli Sub-City Education Bureau for attaining the 1st rank among all the schools in Guleli Sub-city. These wonderful achievements of students make EPS one of the best schools in Addis in particular and our country at large. With no doubt, such significant successes result from coordinated efforts of students, teachers, parents and other stake holders of the school.

Nathan Mesfin Beyero won EPS Student Incentive Scheme

Students at Ethio-Parents’ School achieved a remarkable success in the 2008 E.C regional, national and university entrance examinations. In the University Entrance Examination, all the students have scored an admirable result and joined fields of their internets at varied higher education institutions in the country and abroad as well. Moreover, 8 students have scored 600 and above out of 700, which is an extraordinary achievement in the history of EPS. Above all, 4 of our female students are among the 16 female high scorers who have scored 600 and above within the country. This reveals the fact that EPS holds 25% of the best female scorers in Ethiopia in the 2008 E.C academic Year University Entrance examination.

The third area of improvement lies in new computing architectures that exploit quantum-mechanical weirdness to crunch multiple data sets simultaneously.
The youngest-ever Nobel Prize laureate
Malala Yousafzai, who was born on 12 July 1997, is a Pakistani activist for female education and the youngest-ever Nobel Prize laureate. She is known mainly for human rights advocacy for education and for women in her native Swat Valley in the Khyber Pakhtunkhwa province of northwest Pakistan, at times when girls are banned from attending school. Yousafzai’s advocacy has since grown into an international movement.

In early 2009, when she was 11–12, Yousafzai wrote a blog under a pseudonym for the BBC Urdu detailing her life her views on promoting education for girls in the Swat Valley. There after Malala became very popular on international media and was nominated for the International Children’s Peace Prize by South African activist Desmond Tutu.

However, on the afternoon of 9 October 2012, a gunman pointed a pistol at her and fired three shots at her inside the school bus. Malala survived from this critical condition after getting a better medical treatment at Queen Elizabeth Hospital in Birmingham, England. Deutsche Welle wrote on January 2013 that Yousafzai may have become “the most famous teenager in the world.” United Nations Special Envoy for Global Education Gordon Brown launched a UN petition in Yousafzai’s name, demanding that all children worldwide be in school by the end of 2015; it helped lead to the ratification of Pakistan’s first Right to Education Bill.

The 2013, 2014 and 2015 issues of Time Magazine featured Yousafzai as one of “The 100 Most Influential People in the World.” She was the winner of Pakistan’s first National Youth Peace Prize, and the recipient of the 2013 Sakharov Prize. In July that year, she spoke at the head quarters of the United Nations to call for worldwide access to education, and in October the Government of Canada announced its intention that its parliament conferred Honorary Canadian citizenship upon Yousafzai. In February 2014, she was nominated for the World Children’s Prize in Sweden. Yousafzai was granted an honorary doctorate by the University of King’s College in Halifax, Nova Scotia. Later in 2014, Yousafzai was announced as the co-recipient of the 2014 Nobel Peace Prize, along with Kailash Satyarthi, for her struggle against the suppression of children and young people and for the right of all children to education. Aged 17 at the time, Yousafzai became the youngest-ever Nobel Peace laureate. She was the subject of Oscar-shortlisted 2015 documentary titled ‘He Named Me Malala.’

Since March 2013, she has been a pupil at the all-girls’ Edgbaston High School in Birmingham. On 20 August 2015, she achieved a string of A’s and A* in her GCSE exams.

Peer pressure is the influence you feel from a person or a group of people to do something you might not otherwise consider doing. It is a social pressure on somebody to adopt a type of behavior, dress, or attitude in order to be accepted as part of a group. Peer pressure can push you toward behaviors you don’t want to be alone or left out. So you go with what other people think in order for them to include you.

How does peer pressure affect us?

Peer pressure isn’t always a negative thing. It can be a positive influence and help challenge or motivate you to do your best. However, it’s helpful to recognize that peer pressure can also be negative. It can result in doing something that doesn’t fit with your sense of right and wrong. Peer pressure might influence you in a number of ways, including:

- Fashion choices
- Alcohol and drug use
- Decision to have a boyfriend or a girlfriend
- Choice of who your friends are
- Academic performance

Here are some suggestions that can help you manage peer pressure better.

Value common interests: Hanging out with people who like doing similar stuff may help you avoid a situation where you feel pressured into things you don’t want to do. Remember that being seen hanging out in the “cool crowd” might not be as much fun as it looks if you’re not comfortable with the decisions that crowd is making.

Say no: Having the strength to say no can be hard, but it can also make you feel good to stick with what you believe in. Explain to people in a calm way why you don’t want to be part of something, and you might earn respect from others and gain confidence in yourself.

Try not to judge others: If possible, try not to place judgments on other people’s choices. Respecting someone else’s choice may help them to respect yours. Remember that you don’t have to agree with their actions. Focusing on the reasons why you don’t feel happy with them to respect yours. Remember that you don’t have to agree with their actions.

Take action: Taking action against negative peer pressure can be easier when you’re more comfortable in your environment. Standing up for yourself and others can be a way to gain that comfort. Both of these are ways in which you might be able to create a positive atmosphere within a group.